And herein lies a parallel with another mathematical story. In his remarkable and underappreciated book A History of p , Petr Beckmann argues that the ratio of circumference to diameter is “a quaint little mirror of the history of man.” In the rare societies where science and reason found refuge—the early Athens of Anaxagoras and Hippias, the Alexandria of Eratosthenes and Euclid, the seventeenth-century England of Newton and Wallis—mathematicians made tremendous strides in calculating p. In Rome and medieval Europe, by contrast, knowledge of p stagnated. Crude approximations such as the Babylonians’ 25/8 and the Bible’s 3 held sway.

This same pattern holds, I think, for big numbers. Curiosity and openness lead to fascination with big numbers, and to the buoyant view that no quantity, whether of the number of stars in the galaxy or the number of possible bridge hands, is too immense for the mind to enumerate. Conversely, ignorance and irrationality lead to fatalism concerning big numbers. The Bible, for example, refers twenty-one times to the supposed uncountability of sand. Take Genesis 32:12: “And thou saidst, I will surely do thee good, and make thy seed as the sand of the sea, which cannot be counted for multitude.” Or Hebrews 11:12: “So many as the stars of the sky in multitude, and as the sand which is by the seashore innumerable.” This notion that the multitude of sand grains might as well be infinite, that it’s fit for dumbfounded stupefaction but not for quantification, is an ancient one. Historian Ilan Vardi cites the ancient Greek word ‘yammkosioi,’ or sand-hundred, colloquially meaning zillion; as well as a passage from Pindar’s Olympic Ode II asserting that “sand escapes counting.”

via Who Can Name the Bigger Number?.